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Almtrae t - -St ra in  heat ing results f rom the conversion of mechanical  energy into heat  during progressive deforma-  
tion. As  a physical p h e n o m e n o n  it is well known in fluid mechanics  and  has  been studied theoretically and 
experimentally.  This  work has  been  ex tended  by recent  geophysical developments .  Here  we review (a) the fluid 
mechanics  and geophysical  work and  (b) its application to continental  shear  zones.  

The  models  indicate that  t empera ture  rises of  a few hundred  degrees  can be expected in major  shear  zones 
( t ranseurrent  shear  zones,  the  bases  of  thrust  sheets ,  or  the  margins  of  large diapirs). In certain special si tuations 
(some thrust  sheets  and nappes) ,  even larger rises are possible. The  result ing tempera ture  gradients  should be 
detectable  geologically, but  evidence is scanty. The  result ing thermal  sof tening is sufficient to concentrate  mos t  of  
the deformat ion  in narrow zones.  Thus  strain heat ing is an impor tant  crustal p h e n o m e n o n  which should be 
incorporated in mode l s  of large-scale tectonic processes.  It may  even contribute to local partial melt ing in some 
shear  zones. 

I N T R O D U C T I O N  state, or by circulating fluids. Here  we will ignore the 
' latter effect and make the special assumption that heat is 

STRAXN heating results from the conversion of mechan- transferred only in the solid state. Under  these condi- 
ical energy into heat during progressive deformation.  As tions we are considering the following energy balance: 
a physical phenomenon  it is well known in fluid Er, rERGV ~mCnAmCALEr~ROV E~E~GVOAn,V.D<ORLOST) (1) 
mechanics and has been studied theoretically and STORED = D I S S I P A T E D  + BY THERMALCONDUCTION 

experimentally. This knowledge has been incorporated A large part of this paper  deals with solutions of (1) 
in recent geophysical developments.  The  purpose of this under  boundary conditions appropriate to shear zones. 
paper  is to review ( a ) t h e  fluid mechanics and geophys- It is important  to realize that (1) does not always 
ical work, and (b) the application of strain heating to describe a steady process. If the rate of energy dissipated 
geophysical and geological problems. We aim to show exceeds the rate of heat loss by conduction, the tempera-  
that strain heating is a significant phenomenon  in the ture must rise. The  rheology of most rocks is strongly 
continental crust and that its effects should be (a) temperature-dependent ,  and a rise in temperature  
incorporated in all mechanical models of large-scale causes a softening effect. Such thermal softening may 
deformation,  and (b) borne in mind by the geologist allow an increased rate of deformation and thus an 
when he studies relic thermal gradients and deformation increased rate of energy dissipation. Fur ther  tempera-  
zones. We focus our  attention on shear zones, because ture rises may ensue, leading to fur ther  softening and so 
(i) deformation is strongly concentrated and relatively on. The  general process is referred to as thermal feed- 
large amounts of energy are dissipated; and (ii) the back. Under  certain circumstances, the t empera turecan  
boundary conditions impose physical constraints that increase so quickly that deformation is effectively un- 
lead to simplifications in the mathematical  formulation stable: this is referred to as thermal runaway. Under  
of models, other  circumstances, a steady state may be achieved 

Of the energy dissipated during permanent  deforma- where the energy produced mechanically is continuously 
tion, some may be converted into heat and some may be balanced by that lost by conduction. Thus (1) is in 
used to change the physical state of the deforming mate- general t ime-dependent .  
rials (for example, the mineral phases present,  or their The  amount  of thermal softening and its feedback 
microstructural state). Most models of strain heating effects are strongly dependent  on the flow-laws chosen 
ignore the latter effect and assume that all the mechan- for the strain-heating models. We discuss these aspects 
ical energy is convened  into heat. Although we will here first, concentrating on the tempera ture-dependence  of 
adopt the same assumption, it is important  to bear  in the flow-laws. Next we discuss briefly how stresses and 
mind that geological deformation is often accompanied strain-rates may vary across a shear zone, as this pro- 
by changes in physical state (e.g. syntectonic meta-  r ides important  constraints on the models. 
morphism).  In some situations, endothermic reactions Models of strain heating are introduced and described 
may consume a significantly large proport ion of the in increasing order  of complexity. Thus we discuss first 
available energy, the steady-state solutions for Newtonian materials with 

Of the energy convened  into heat,  some is stored loc- a simple tempera ture-dependence;  then we introduce 
ally and leads to a rise in temperature,  whereas the rest is more realistic tempera ture-dependences  and non- 
removed,  for example by thermal conduction in the solid Newtonian behaviour;  lastly we consider some aspects 
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of time-dependent behaviour. This is not strictly the 1975). Under most geological conditions extant in the 
order in which developments appeared historically, for continental crust, flow is largely achieved by deforma- 
which we refer the interested reader to the excellent tion mechanisms that are diffusion=controlled (Heard 
reviews by Sukanek & Laurence (1974) and Schubert & 1976). Amongst these are dislocation creep, Coble 
Yuen (1978). creep, Nabarro-Herring creep and pressure-solution 

In a section on geological applications, we consider (see Rutter 1976, McClay 1977). The corresponding 
some of the possible uses and misuses of the models. The law for steady=state flow in an isotropic rock contains a 
subject is certainly in its infancy and the conclusions are power-law dependence of strain-rate upon stress. It can 
limited by the lack of available data on rheological be written (Nye 1953): 
properties and boundary conditions for the systems 
considered. For these reasons the applications must be ~'q = (KD/RT)E'2"'-LT-~'q (2) 

L interpreted cautiously. Nevertheless we feel the subject 
may be fundamental to an understanding of tectonic where e'q is the tensor of deviatoric strain-rate, or'ij that 
processes, and we have thus attempted to clarify some of of deviatoric stress, ~'2 is the second invariant of the 
the principles involved, latter, Tis the thermodynamic temperature, R is the gas 

constant, D is the diffusivity of the rate-controlling pro- 
cess, n is the stress=exponent, and K is a constant. Such 

RHEOLOGICAL PARAMETERS an equation has been predicted theoretically and veri- 
fied experimentally for polycrystaUine monominerallic 

Flow laws and thermal softening rocks, including calcite (Heard & Raleigh 1972, Rutter 
1976, Schmid et al. 1977), quartz (Rutter 1976, Parrish 

Our knowledge and understanding of the rheology of et al. 1976) and olivine (Post 1977, Kohlstedt & Goetze 
the continental crust is far from complete but it is 1974). PolymineraUic rocks are likely to behave in the 
expanding. Here we will discnss some aspects relevant to same way (Stocker & Ashby 1973, Weertman & 
models of strain heating. Weertman 1975, Heard 1976). 

For a rock with a given composition and structure, the In equation (2), the diffusivity D is temperature- 
flow characteristics depend heavily on three parameters, dependent: 
stress, temperature and strain-rate (Heard 1976). In 

D = Do exp ( - H / R  T) (3) 
general, two of these may be taken as independent vari- 
ables. Measurements of strain in natural rocks and where Do is a constant, H is the activation enthalpy of 
laboratory experiments indicate that large volume the diffusion process and exp ( -  H/ R T) is the Arrhenius 
changes are rare. On the scale of the continental crust, factor. This factor is of great importance, as it accounts 
the effects of mean stress (lithostatic pressure) are also for most of the temperature dependence of creep. Its 
not likely to be highly significant. Thus we may consider effects are most strongly felt over a certain temperature 
primarily the deviatoric components of both stress and range that depends on the value of the activation 
strain-rate tensors, enthalpy for the material in question. For most rocks, 

All variables may conveniently be linked by means of this value is within the range 0-300 kJ m01- ~ (Heard 
constitutive equations (flow-laws). The exact form of 1976), and the effects of the Arrhenius factor are most 
such equations depends on the mechanism of deforma- strongly felt at femperatures below the melting point 
tion that is dominant (see Weertman & Weertman (Fig. 1). For example, in the range 300"C < T 1 800"C, 
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Fig. 1. Temperature-dependence of diffusivity. Temperature,  T, is in Kelvins. Diffusivity, D, is referred to constant value, 
D 0. Curve A is based on the Arrhenius factor, exp ( - HIRT), where His  taken as 20 kJ tool- z. Curve F is based on the Frank- 

Kamenetzky approximation about point P. 
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and for an activation enthalpy of 200 kJ tool- l (typical of need consider only the shear strain-rate, "9 = 2dxy, which 
calcite), a temperature  increase of 100 ° at constant stress may vary across the shear zone. 
corresponds to a tenfold increase in strain-rate. It is To  respect the equations of stress equilibrium, in the 
perhaps surprising that such a dramatic effect has so absence of gravitational forces, the shear stress and 
often been neglected in the modelling of continental normal stress acting on the margins must also be con- 
processes, stant across the entire zone (see e.g. Cobbold 1977). If 

The Arrhenius factor contains an exponential depen- the material is isotropic, we need consider only the shear 
dence on reciprocal tempera ture  which is mathemati-  stress (equation 4). If gravitational forces are significant, 
cally inconvenient.  Hence it is often replaced by a direct as in a thrust sheet or nappe, the shear stress increases 
exponential  dependence,  exp (aT) (Frank-Kamenetzky with depth (see Elliott 1976). For  constant density and 
1939). The Frank-Kamenetzky approximation is surface slope, the increase is linear. 
obtained by retaining only the first two terms in a Taylor  
expansion of (H/RT)  in the vicinity of some reference 
temperature,  To: this yields a = H / R T  2. The approxima- STRAIN H E A T I N G  M O D E L S  
tion is good within the range T O - 50 ° < T <  To + 50 ° 
(Fig. 1), but beyond this its use may lead to significant General equations 
errors. 

It should be pointed out that tempera ture  is not neces- For  an isotropic medium, the energy balance equation 
sarily the only softening agent in (2). Thus the stress (1) can be written explicitly as (Carslaw & Jaeger  1959): 
exponent ,  n, also plays a part (see Poirier 1980). For  

a T  
many rocks, however,  it is in the range 1 < n < 5 (Heard  C = k~72 T + E. (5) 

at 1976): this means that strain-rate is more  sensitive to 
variations in temperature,  than it is to variations in The term on the left-hand side represents the rate 
stress. Other  softening factors, implicit in the parameter  at which temperature  increases with time, t. This is 
K of ( 2 ) a r e  strain-softening, geometric or rotation sof- governed by the volumetric specific heat, c. On the 
tening (Cobbold 1977, Poirier 1980) and changes in right, the first term represents the rate of heat loss by 
structure (Poirier 1980). Very few quantitative data are conduction, this being governed by the thermal 
available for  these processes and they will not be consi- conductivity, K, and the temperature  distribution 
dered in what follows. Structural changes associated (~72T= 02T 82T O2T. 
with strain softening often lead to anisotropic behaviour,  ~ + ~ + ' ~ ) "  The second term, E, is the 

so that (2) may be oversimplified in this respect. Some of rate of energy dissipation per unit volume of material. It 
the consequences of anisotropic rheology in the is given by: 
development  of shear zones have been outlined by Cob- E = cr,1~,i (6) 
bold (1977): they will not be considered here. where tr~j is the strain tensor and dijthe strain-rate tensor. 

For  an isotropic rock undergoing simple shear such For  simple shear, (6) takes the simple form: 
that the shear direction is the coordinate axis x, the plane au 
of shear is xy and the velocity along x is u, equation (2) E = (rs~/= trS~yy. (7) 
reduced to: 

au In (5), both c and k are generally taken to be constant, 
"9 = a"-} = (2B /T )exp  ( -H /RT) t r~  (4) because for natural materials their temperature-  

where trs = ¢r~y is the shear stress, "9 = 2~y is the shear dependence  is generally small; also this assumption 
strain-rate and B = KD0/R is a constant. This is the makes the equation easier to solve. 
equat ion that will be used in the strain heating models of Another  simplification is introduced if we consider 
the next section. It should perhaps be emphasized that only the ideal shear zone, for which all variations are 
the equation describes a steady state flow, yet strain one-dimensional,  that is, normal to the boundaries. 
heating leads in general to t ime-dependent  flow. There  Taking the boundaries normal to y, (5) becomes: 
is obviously a need for experimental  work on rocks aT kO2T 
under  conditions of variable temperature:  until this is c = + E. (8) 
done the use of (4) can be criticized. 8t 

Use of this equation is probably justified for thrust 
Strain-rate and stress distribution sheets and nappes, where heat flow is mostly vertically 

directed. Justification is more difficult for transcurrent 
We will consider idealized models of shear zones, with shear zones near  the upper  surface of the crust, as here a 

plane parallel margins (Ramsay & Graham 1970). The  significant proport ion of the heat flow is directed verti- 
kinematics of such zones are simple: in the absence of (a) cally and hence parallel to the boundaries of the zone. 
deformation outside the zones, and (b) volume changes, It is convenient  to consider three special limits of (8), 
all internal deformation is accomplished by shearing for each of which one of the terms vanishes. If the first 
parallel to the margins. The shear direction and the term vanishes, we have: 
width of the zone are constant in space. We will also k a2T = - E. (9) 
assume that the former  is invariant with time. Thus we 8y 2 



152 J . P .  BRUr~ and P. R. COBBOLD 

If E does not vary with time, (9) represents a steady 
state. Whether  or not such a state is ever truly attained 8 r 
geologically, the study of (9) is a useful if not necessary 
preliminary to the study of t ime-dependent  solutions. ~ / f ~  
Much of the work reviewed in this paper  concerns solu- a: t0 
tions of (9). If in (8) the second term vanishes, we have: 

tAl )" 
0T -r 

c-37- = E. (10) o, 

W 
Here  no heat is conducted throughout  the material and J z 
the system is therefore at all points adiabatic. Such a o ~t 

t.0 situation never  actually occurs, but it is useful as a first z 
approximation for materials with very low thermal 
conductivity or  for situations where thermal  gradients ~ ~" 
are very small. Geologically, the use of (10) may be jus- 
tiffed occasionally; but in general it is dangerous, 0.3 0.4 0.5 0.6 0.7 0.8 G 

OIMENSlONLESS SHEAR STRESS 
because the rate of heat loss by conduction often 
matches or even surpasses the rate of heat production by Fig. 2. Steady-state solution for a Newtonian slab, with Frank- 

Kamenetzky approximation. The Brinkman number,  Br, is plot ted 
deformation,  against the Oruntfest  parameter,  O. Thermal runaway occurs if G is 
Finally if in (8) the third term vanishes, we have: maintained at a value greater than 0.88. 

aT k a2T c = . (11) ical expressions for the shear stress and shear rate across 
at ay 2 the slab. It is convenient  to express these by means of 

This corresponds to a zero heat source, and is the equa- two-dimensionless parameters,  the Brinkman number,  
tion of heat conduction in one dimension. Solutions to Br, and the Gruntfest  parameter ,  G (Gruntfest  1963). 
this equat ion are well known (Carslaw & Jaeger  1959). These are defined as 
They  are useful models for what happens if internal a0~0U~ ah2o.~, 
deformation ceases. Br - - - ;  G - - -  - ahZEo/k (15) 

k kv,0 

Steady state soluaons where ~ is the viscosity at temperature  To, U is the 
boundary value of the velocity u, and h is the half- 

Substitution of (7) in (9) gives: thickness of the slab. The solution of (14) is found to be 
single-valued in terms of Br  but double-valued in terms 

/c a2T + au aY 2 o - ~  = 0. (12) of G (Joseph 1964, Gavis & Laurence 1968a). It can be 
written (Sukanek & Laurence 1974): 

For  a steady-state, the stress o-~ is constant in time. In the = 4 arcsin (16) 
absence of body forces it is also constant in space and , G (2 + B'-"--'~) 
(12) can therefore  be integrated, giving (Gavis & Laur-  
ence 1968, Yuen et al. 1978). The parameter  G has a maximum possible value O1. of 

0.88 (Fig. 2), for which the Brinkman number  has a 
k d T  + o'~u = 0. (13) value Br L of 4.55. For  G > GL, no steady shear flow 

dy exists. For  G < GL, there are two possible values of the 
No further  integration is possible without introducing Brinkman number. Flows with Br < Br L have been 
the rheological properties.  Substitution of the power- termed subcritical (see Schubert  & Yuen 1978), and 
law ( 4 ) i n t o  (12)gives:  those with Br > BrL, supercritical. Analytical expres- 

sions also exist for the temperature  and velocity profiles 
k d2T + (O's) "+ 1 (2B/T) exp ( - H / R T )  = 0. (14) across the slab (Gavis & Laurence 1968). The tempera-  

dy2 ture varies in an almost parabolic way, reaching a maxi- 
This is a nonlinear differential equation of the second mum in the centre of the slab (Fig. 3). In consequence 
order  in T. If we use the Frank-Kamenetzky approxima- the velocity also reaches a maximum in the centre. 
tion, exp(aT) , insteadof theterm(2B/T)exp(-H/RT),  The analytical solution (16) has been confirmed by 
analytical solutions of this equation may be found. A numerical calculations (Gruntfest  1963) which have 
large amount  of theoretical work concerning this yielded the same maximum value of G = 0.88 for a 
approach is reviewed historically and discussed by steady state. The physical reality 6f the solutions, and 
Sukanek & Laurence (1974). For  a known boundary especially that of the supercritical branch, was for a long 
temperature,  To, Gavis & Laurence (1968a) give an time open to question. It was finally confirmed by 
expression for the temperature  within a slab of constant experiments on Newtonian fluids (Sukanek & Laurence 
thickness undergoing heterogeneous shear (plane 1974). These demonstrated the existence of a maximum 
Couette  flow). Early solutions of (14) assume New- shear stress (G ~ 0.88) at a certain shear rate 
tonian behaviour (n = 1), which leads to simple analyt- (Br ~ 4.5). The behaviour can be explained as follows. 
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is reviewed by Yuen & Schubert  (1979). They  show that 
5.0 use of the Arrhenius factor leads to the solutions having 

0 -" O (T- T O ) a third branch (the hot branch), as well as the subcritical 
4.0 ~o and supercritical branches. The hot branch exists for all 

high (Fig. 4). can explained as values of G It be follows. 
At high shear rates, strain heating causes large tempera-  

3.0 ture rises. The Arrhenius factor then tends towards a 
limiting value (see section on flow laws). Hence the 

2.0 thermal factor becomes almost negligible and stress 
l once again increases with strain rate, as it does on the 

cold subcritical branch. It should be noted that the large 
1.0 temperature  rises needed to attain the hot branch will in 

many natural materials cause changes in deformation 
mechanisms or in mineral phases, thus invalidating the 

0.0 I model.  The hot branch can be considered as an upper  
-1.0 0 . 0 ~  _.. y/[1 1.0 theoretical limit for the model considered. 

Fig. 3. Temperature  distribution for steady-state shearing of New- Using the full Arrhenius factor, Yuen et al. (1978) 
tonian slab. Dimensionless temperature,  0 = a ( T -  To), is plotted g i v e  a n  analytical solution for the maximum tempera-  
against dimensionless position, ~ = y/h, for two values of the Grunffest ture, Tm~, in the centre of a Newtonian slab. They  show 

parameter ,  G. 
that: 

At  low shear rates, the rate of shear strain increases U~ = 4 kB {E 1 (H/RTm~) - Ex (H/RT0)} (17) 
monotonically with stress, according to the stress- 
exponent ,  n, The  heat produced within the slab is neglig- where u 0, T o are the velocity and temperature  at the slab 
ible. At  higher shear rates, shear heating is significant, boundaries and E 1 is a special function, the exponential  
but more  than matched by the rate of heat conduction: integral. It follows that for a given boundary velocity (to 
thus the rate of shear strain still increases with stress, which corresponds a unique value of boundary stress), 
although thermal  softening has an effect. Above  the crit- the maximum temperature  in the centre of the slab is 
ical rate (Br = 4.55), heat is produced faster than it can independent  of the slab thickness. If T o ,~ Tin= (17) is 
be conducted out of the system: the material becomes well approximated by the simpler expression: 
softer and the stress drops. In general, for  a given stress, 
there  are two possible states, a cold one (subcfitical U~0 = (16 kBRTm~/H)  exp ( - H / R T m ~ ) .  (18) 

branch) and a warm one (supercritical branch). The accuracy of (18) has been verified by numerical 
A similar behaviour  is exhibited by a material obeying models incorporating a full-time dependence (Yuen et 

a power law as in (4) (Gavis & Laurence 1968b). This is al. 1978). Similar results have also been obtained by 
to be expected, because the solution of (14) at constant graphical integration (Turcot te  & Oxburgh 1968). 
stress gives the same temperature  distribution for any The existence of three branches of the steady-state 
value of n. solutions has been confirmed numerically by Clarke et 

Solutions of (14), with the full Arrhenius factor al. (1977) even for situations where there is a geoth- 
instead of the Frank-Kamenetzky  approximation,  have ermal heat flux normal to a slab, and where the shear 
been studied by Yuen & Schubert  (1977), and Schubert stress varies linearly with depth, as might be expected in 
& Yuen (1978), mainly in connection with models of glaciers and ice-sheets. Instead of the Gruntfest  
shear flow in the asthenosphere.  The general approach parameter ,  G, Clarke et al. (1977) use a stability 

parameter ,  1~, defined as: 

DIMENSIONLESS [3 = ah2EJk. (19) 

SHEAR RATE H Here  E b is the rate of energy dissipation at the base of the 
slab, when T =  T 0. The solutions (Fig. 5) can be pre- 
sented in terms of three parameters:  one is the stability 
parameter ,  [3, another  is a dimensionless geothermal 
parameter ,  ~; the third is the dimensionless surface 
temperature  gradient. For  high values of ~, the solution 
has only one branch, but for low values it has three bran- 
ches. 

If the shear stress and hence [3 are increased from 
some initially low value, there will be a positive jump in 

DIMENSIONLESS temperature  and velocity once the critical value [31 is 
SHEAR STRESS exceeded (Fig. 5). Similarly if [3 decreases from some 

Fig. 4. Sketch of steady-state solution for Newtonian slab with initially high value, there will be a negative jump near 
Arrhenius factor. H--hot branch; /--intermediate or supercritical the other  critical value [30. The points are referred to in 

branch; C--cold or subcritical branch, the mathematical  li terature as bifurcation points (Keller 
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01NENSIONLESS ~ finite-amplitude disturbances, especially changes in 
TEMPERATURE | ~ stress. 

GF~A~r ~ _ , ~ J  !~ ~ Clarke et al. (1977) have considered the time con- 
~ x ~  ~ - - - ' 1 ~  I " ~ I :i . f i ! ,  ~ ~ : ! ~  I i ~ ! i  stunts for the growth of small perturbations super- 

~ imposed on a subcritical basic state where stress 
• ~:~,. f increases linearly with depth. Specifically they have 

• ~ i chosen perturbations due to increases in stress. Rapid 
growth of instability was obtained only for relatively 

GEOTHERMAL ~ l ;~.  • ~ I FLUX PARAMETER ~ ~ [ " ~ i large increases in stress. No analysis was performed for 
i/ two-dimensional perturbations and, following Yuen & 

Schubert (1979), it is possible that the basic state is 
• /~- n, stable under these conditions. 

STABILITY PARAMETER/3 Fully time-dependent solutions 

Fig. 5. Sketch of steady-state solution for ice-sheet or thrust-sheet. 
Substitution of (4) and (7) into (8) gives the one- 

& Amman 1969). Topologically, the surface (Fig. 5) dimensional time dependent equation: 

correspondstooneofthesevenelementarycatastrophes a T  k a2T +(crs) "+1 (2B/T) exp ( - H / R T ) .  (20) 
known as a cusp, or Riemann-Hugoniot, catastrophe c = 
(Thorn 1972). A positive temperature jump at ~1 would at ay 2 
occur physically by a process of thermal runaway. Just If we use the Frank-Kamenetzky approximation, (20) 
how easily or at what point exactly this can occur must be becomes 

investigated using either the full time-dependent equa- a T k 02 T + (Crs)~÷ l exp a (T To). (21) 
tions, or else a more simplified stability analysis, known c = 
as a perturbation analysis. This will be discussed next. at ay ~ 

This equation can be reduced to a dimensionless form by 
Stability of the basic state the substitutions 

0 = a (T - To); ~ = y/h; ,t = kt/ch 2. (22) 
Much attention has been focussed on the stability of 

the steady-state solutions so far examined. Thus if we We obtain: 
assume that a flow has a basic state which is steady, we ~O 020 
may ask what happens following a small perturbation of - -  - - -  13 exp 0 (23) 
the flow. Does the perturbation amplify significantly a'r a~ 2 
with time, so that the basic state is unstable; or does the where 13 is defined as in (19) and becomes the Gruntfest 
perturbation decay, so that the flow returns to the basic parameter, G, for Newtonian materials (n = 1). It was 
state which is therefore stable? Gruntfest (1963) who showed numerically that solu- 

It would appear important in stability investigations of tions of (23) are critically dependent on the value of G 
this kind to distinguish between infinitesimal and finite (Fig. 6). For boundary conditions of constant stress and 
perturbations. If perturbations are infinitesimal, t he  temperature a steady state is achieved provided 
mathematical treatment of the problem becomes easier, G < 0.88. This is the critical value predicted analytically 
because the equations to be solved are linearized. On the (see section on Steady-State Solutions). The time 
other hand, finite perturbations may have more of a required to arrive at the steady state is approximately 
destabilizing effect, given by (Fig. 6): 

Using the one-dimensional time-dependent equation 
(8), Melosh (1976) argued that supercritical basic states -r = 1. (24) 
are unstable in the presence of irdinitesimal perturba- For G > 0.88, no steady state is attained; instead the 
tions. The perturbation analysis assumed a condition of temperature increases superexponentially (Fig. 6). This 
constant boundary stress. Yuen & Schubert (1977) and is thermal runaway. 
Schubert & Yuen (1978) have shown that the supercrit- Griggs & Baker (1969) and Fujii & Uyeda (1974) also 
ical states are stable to infinitesimal perturbations if the studied this behaviour under constant stress. Under con- 
surface velocity is maintained constant. All these ana- stunt strain-rates or constant boundary velocities, no 
lyses however assumed that the perturbations were one- thermal runaway is possible. Instead the system evolves 
dimensional, until it reaches one of the branches of the steady state 

Recently, Yuen & Schubert (1979) have investigated (Griggs & Baker 1969). 
two-dimensional infinitesimal perturbations in mate- Using the full Arrhenius factor and a Newtonian 
rials with a power-law rheology. They have shown that rheology, Yuen et al. (1978) have studied the time- 
all the basic states are stable to such perturbations. They dependent evolution of an initial disturbance in an infi- 
also argue that three-dimensional perturbations should nitely thick slab, with constant boundary velocity and 
decay even more rapidly. However they do point out temperature. If the disturbance is initially highly 
that thermal runaway could perhaps be induced by localized in a narrow zone within the slab, the tempera- 
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10s lrmn amounts  of energy dissipated in orogenic belts and the I lmm icml I lh I t empera tu re  rises this could produce.  He  did not con- 
10 cm Id sider feedback and was forced to conclude that deforma-  Im 1o T 

h 10 m ' 1 0 0 0  v tion did not produce  enough heat  to account for regional 
/ I040-  ~ metamorphism.  More  recently, Poirier et al. (1979) 

100ram ~M.o _ ~ ~ ~r~' have p roposed  a model  of shear zone development  with 
| L 1Okra ' IOOM.o , , - o o  oo 

e 5 o o o o ~ thermal  feedback under  boundary  conditions of con- 
stant strain-rate.  They  conclude that strain heating does 
not lead to significant t empera tu re  rises and that  the 

4 resulting shear zone geomet ry  is not very different f rom 
that  produced under  isothermal conditions. This result is 
somewhat  surprising, but probably  is an outcome of the 

3 ~ assumption of constant  strain-rate.  
, i  

2 ~ 
~ j External heat source only 

1 I , ~ - J  These  models  use the equations of heat  conduction in 
G:O.5 one (equation 11) or  more  dimensions. Strictly they are 
G:0.3 not models  of strain heating, but we ment ion  them, 

0 1 2 3 4 5 .0 because they have contr ibuted strongly to geologists '  
Z" understanding and recognit ion of thermal  problems.  

Fig. 6. Numerical results of Gruntlest (1963) for time-dependent Thus G r a h a m  & England (1976) considered frictionally 
model. Dimensionless temperature, 0, is plottedagainstdimensionless genera ted  heat  on fault surfaces and determined the 
time, x, for v,'Irious values of Gruntfest parameter, G. True values of 
time are indicated (top) for various widths, h, of shear zone. True thermal  history of adjacent  rocks. Close correspondence 
values of temperature (in degrees centigrade) are shown (right) for was found with t empera tu re  deduced f rom metamorph ic  

various values of the Frank-Kamenetzky exponent, a. mineral  assemblages.  

ture in that  zone rapidly tends towards the m a x imum Constant internal heat source 
possible value predicted by the steady-state  solutions, 
whilst outward conduct ion of heat  causes the zone to These models  are based on equat ion (8) where E is 
widen slowly. Situations where the initial disturbance is assumed to be constant.  Thus Rei tan  (1969) suggested 
not so highly concentra ted  initially are considered by that heat  could be genera ted  by frictional contact be-  
Fleitout & Froidevaux (1980). tween the consti tuent g a i n s  of a rock and that  this could 

lead to metamorphism.  Unfor tunate ly  the assumption of 
energy dissipation constant in space requires that  

USES  A N D  MIS US ES  OF M O D E L S  deformat ion  be homogeneous:  otherwise the equations 
of stress equilibrium are violated. This limits the useful- 

Geologists  and geophysicists have long been aware ness of the model.  The  same criticism can be levelled at 
that  deformat ion  is a potent ial  source of thermal  energy the model  of shear zone deve lopment  proposed  by 
and this has led to many  qualitative speculations con- Nicolas et al. (1977). We  conclude that these models  are 
ceming the relationships of deformat ion  and inappropr ia te  for shear  zones. 
me tamorph i sm in orogenic belts. In this review we will 
consider only quanti tat ive analyses. They  may be listed Thermal runaway under constant stress 
in historical order;  but we prefer  instead to group them 
according to the num ber  of pa ramete rs  considered and The  work of Gruntfest  (1963) on solutions of equa-  
the resulting complexi ty of the equations. We do not tion (23) for Newtonian materials  st imulated much 
pre tend  that the review is complete,  interest in the possibility of thermal  runaway occurring 

during natural  processes. The  advantage of this 
Adiabatic models approach  is that  it is a simple ma t t e r  to calculate the sta- 

bility pa rame te r  G of (15) and so decide whether  or not 
These  correspond to solutions of equat ion (10). Such runaway will occur. The  disadvantage is that  it is neces- 

models  have the advantage of being relatively simple sary to know the width of the zone of shearing. Also the 
and of providing an upper  limit on the t empera tu re  rises process cannot  occur unless the applied shear stress 
that  can occur. It  should not be forgot ten that, by neg- remains constant or nearly so. 
lecting heat  loss by conduction,  they may  dangerously The  general  approach has been  applied to problems 
overes t imate  the true t empera tu re  rise. The  extent of of: (a) the genesis and emplacement  of magmas  (Shaw 
such a rise depends on whether  or  not the models  con- 1969, Fujii & Uyeda  1974, H a r d e e  & Larson 1977); (b) 
sider feedback effects and on the boundary  conditions thermal  instability in the as thenosphere  (Anderson & 
adopted.  Perkins 1974, Melosh 1976, Schubert  & Yuen 1978, 

Goguel  (1948) was one of the first to calculate the Yuen & Schubert  1979); (c) the stability of ice-sheets 
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CALCITE QUARTZ 
Fig. 7. Calculation of critical shear-zone widths for calcite (left) and quartz (right). Deformation mechanism maps (a & b) 
are take. from Rutter (1976). Differential stress, (r, normalized by the elastic modulus, (3, is plotted against temperature. 
Curves are labelled for - log {e/s-l}, where ~ is axial strain-rate in uniaxial compression. In (c) and (d), curves are labelled 
for - log {JF./Wm-3}, where  E is the rate of energy dissipation in s imple shear.  In (e) and (f), curves are labelled for - log 

{ h Z m } ,  where  hc is the critical shear  zone width. 

(Clarke et al. 1977); and (d) shear zones in the conti- of the Frank-Kamenetzky approximation. Using a value 
nental crust (Cobbold & Brun 1977). of k = 2.5 Wm -1 K -z, and G = 0.88 (the critical value 

It is instructive to calculate the critical width h c of a for onset of thermal runaway) we have calculated, by 
shear zone which must be exceeded for thermal runaway means of (25) the critical shear zone widths for thermal 
to occur under given conditions of stress and rheology, runaway in polycrystalline quartz or calcite (Figs. 7e & 
From (15) we have: f). The results using this model indicate that thermal 

hc = (G/daE0) i. (25) runaway is only possible for very wide zones (1 krn or 
more) or very high differential stresses (greater than 1 

If we take a rock for which the mechanisms of deforma- kbar = i0  s Pa). These conditions are difficult to meet in 
tion and strain-rates are known under various conditions natural shear zones: so is the condition of steady applied 
of temperature and differential stress (Figs. 7a & b), it is stress, which is necessary for thermal runaway. One 
possible to calculate the corresponding rates of energy possibility which comes to mind is a thrust sheet or 
dissipation (Figs. 7c & d) and the exponential constant, nappe, which is analogous to an ice sheet or glacier. For 
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thrust sheets, the total thickness may easily exceed 5 km; the widening of the zone of shear. The maximum 
but the basal shear stress is unlikely to exceed 50 bars (5 temperatures  attained are well predicted by the steady 
MPa) (Elliott 1976). These conditions are apparently state solutions. 
not sufficient for the onset of runaway (Fig. 7), but they 
are close enough to warrant a bet ter  analysis. Thus we 
may consider the model  of Clarke et al. (1977), origi- DISCUSSION 
nally proposed for ice-sheets, where the shear stress 
increases linearly with depth. Unfortunately,  results are We wish to discuss certain points that we feel may be 
not available for the range of activation energies typical of interest to structural geologists, as well as suggest how 
of many rocks: thus this subject remains to be investi- further progress might be made. 
gated. 

For  runaway to occur in narrow zones (<  1 m), Possibility of inducing partial melting 
differential stresses must exceed 1 kbar (108 Pa). Such 
conditions may lead to seismic failure, thus rendering It has been suggested many times that shear heating 
the ductile models inapplicable, could raise temperatures  sufficiently to cause partial 

A factor not considered in analyses of thermal melting (e.g. Nicolas et al. 1977), leading in turn to 
runaway is, of course, the time. Is enough time available diapiric uprise of granitic melts. This would explain cer- 
for thermal runaway to become established? Are  the tain associations of granitic bodies and shear zones in the 
displacements involved not too great? For  problems of continental crust. Conversely, it has been suggested 
stability in the asthenosphere,  Yuen & Schubert (1979) (Poirier et al. 1979) that thermal  softening produced by 
have applied equation (24) and decided that there may ascending plutons would conveniently localize a major  
be just enough time to develop thermal runaway. For  shear zone, and explain the association more  readily. 
nappes and thrust sheets, where deformation is often The subject is of great interest in tectonics, but field evi- 
concentrated in the lowermost zones and the total dence (in particular, geochronological data) is lacking. 
displacement may be in the order  of tens of kilometres, Of the models discussed above, none of the physically 
there would appear  to be no problem here either, valid ones predict temperatures  high enough to yield 
Nevertheless, the subject remains open. partial melting, with the exception of those involving 

thermal runaway. But we have seen that thermal 
Steady state runaway is unlikely to occur in the crust except in seismic 

situations (narrow zones and high stresses) and possibly 
The steady-state solutions discussed earlier may be in some nappes and thrust-sheets: therefore  it is 

used as models for steady geological situations where tempting to conclude that shear heating cannot produce 
stress is not high enough for thermal  runaway to occur, partial melting. 
Thus Yuen et al. (1978), using equation (18), have The  conclusion is perhaps premature,  because the 
calculated the maximum tempera ture  Tm~ attained in models considered are still very simple. Thus they all 
the centre of a transcurrent  shear zone subjected to a assume, for example, that the material in the shear zone 
constant boundary velocity of 10 era a -1. The values is compositionally homogeneous.  Fleitout & Froidevaux 
obtained are independent  of the shear zones thickness (1980) have suggested that localized partial melting may 
and of the boundary  temperature  provided this is not too occur in softer layers within a stratified sequence. 
high. In contrast,  values depend on rheology: they are 
1190, 999, 963, 834 and 619 K, for dry olivine, wet Rheological consequences of strain heating 
olivine, diabase, wet quartzite and limestone, respec- 
tively. The same values were also obtained by numerical Even if strain heating does not always have such spec- 
methods. Such temperatures  are surprisingly high; but tacular consequences as partial melting, it must 
then 10 cm a-1 is geologically a high velocity (spread nevertheless exert  a very significant control on deforma- 
over a width of 30 kin, it corresponds to a mean strain- tion in large-scale shear zones. For  example, at constam 
rate of about  10-13s- 1). The temperature  gradient across stress, even a rise in temperature  of 100 K can lead to an 
the steady-state model implies that strain-rates in the order-of-magni tude increase in strain rate (Fig. 7a, 1). It 
centre are several orders of magnitude greater than at may also in certain circumstances cause a change in 
the margins. Thus most of the deformation is concert- deformation mechanism (Fig. 7a, 2). The steady-state 
trated in the centre, and thermal softening, even in models have no difficulty inpredic t ingtempera turer i ses  
steady state, is a very effective localizing agent, of 100 K and this is sufficient to localize 90% of the 

deformation in the hot ter  zone. Such a mechanical effect 
Full time-dependence cannot be neglected in any simulation of large-scale tec- 

tonic processes. 
Fully t ime-dependent  solutions of (20) have been 

applied by Yuen et al. (1978) to the initiation of a Consequences for the field geologist 
t ranscurrent  shear zone in viscous crustal materials (see 
earlier sections). The approach provides interesting All strain heating models for shear zones predict 
information on the thermal  history at each point and on tempera ture  differences and gradients which should be 
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d e t e c t a b l e  in  r o c k s .  E v i d e n c e  o f  s u c h  g r a d i e n t s  (e .g .  quakes. In: Properties of Matrer under Unusual Conditions (edited by 
N i c o l a s  et al. 1 9 7 7 )  is s o  f a r  s c a n t y  a n d  c o n t r o v e r s i a l .  Mark, H. & Fernbach, S.) lnterseience, New York, 23--42. 

Gruntfest, I. J. 1963. Thermal feedback in liquid flow; plane shear at 
Isotope- methods, detailed studies of deformation constant stress. Trans. Soc. Rh~ol. 7, 195-207. 
mechanisms, and studies of fluid inclusions o r  Hardee, H. C. & Larson, D. W. 1977. Viscous dissipation effects in 
temperature-sensitive mineral parageneses, may magma conduits. J. Volcanol. & Geotherra. Res. 2, 299-308. 

Heard, H. C. 1976. Comparison of the flow properties of rocks at 
e v e n t u a l l y  i n d i c a t e  w h e t h e r  t h e  m o d e l s  a r e  c o r r e c t .  I n  crustal conditions. Phil. Trans. R. Sac. A283, 173-816. 
particular it may become possible to decide whether Heard, H. C. & Raleigh, C. B. 1972. Steady state flow in marble at 
h e a t  is c o n s u m e d  b y  o t h e r  p r o c e s s e s ,  s u c h  as  c i r c u l a t i o n  500"C-800"C. Bull. geol. Soc. Am. 83, 935-956. 

Joseph, D. D. 1964. Variable viscosity effects on the flow and stability 
of fluids or endothermic mineral reactions, of flow in channels and pipes. Physics F/u/ds 7, 1761-1795. 

Keller, J. B. & Amman, S. 1969. Bifurcation Theory and Non Linear 
Further prospects Eigen Value Problems. W. A. Benjamin, New York. 

Kohlstedt, D. L. & Goetze, C. 1974. Low-stress high-temperature 
creep in olivine single crystals. J. geophys. Res. 79, 2045-2051. 

The theoretical models a r e  as  yet too simple. More McClay, K. R. 1977. Pressure solution and Coble creep in rocks and 
complex models and equations should perhaps be minerals: a review. J. geol. SOc. Lond. 134, 57-70. 

Melosh, H. J. 1976. Plate motion and thermal instability in the 
s t u d i e d .  T w o - d i m e n s i o n a l  a n d  t h r e e - d i m e n s i o n a l  asthenosphere. Tectonophysics 35, 363-390. 
models are already feasible, using numerical methods. Nicolas, A., Bouchez, J. L., Blaise, J., Poirier, J. P. 1977. Geological 
C o u p l i n g  o f  t h e r m a l  a n d  m e c h a n i c a l  e f f e c t s  is p e r h a p s  aspects of deformation in continental shear zones. Tectonophysics 
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