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Abstract—Strain heating results from the conversion of mechanical energy into heat during progressive deforma-
tion. As a physical phenomenon it is well known in fluid mechanics and has been studied theoretically and
experimentally. This work has been extended by recent geophysical developments. Here we review (a) the fluid
mechanics and geophysical work and (b) its application to continental shear zones.

The models indicate that temperature rises of a few hundred degrees can be expected in major shear zones
(transcurrent shear zones, the bases of thrust sheets, or the margins of large diapirs). In certain special situations
(some thrust sheets and nappes), even larger rises are possible. The resulting temperature gradients should be
detectable geologically, but evidence is scanty. The resulting thermal softening is sufficient to concentrate most of
the deformation in narrow zones. Thus strain heating is an important crustal phenomenon which should be
incorporated in models of large-scale tectonic processes. It may even contribute to local partial melting in some
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shear zones.

INTRODUCTION

STRAIN heating results from the conversion of mechan-
ical energy into heat during progressive deformation. As
a physical phenomenon it is well known in fluid
mechanics and has been studied theoretically and
experimentally. This knowledge has been incorporated
in recent geophysical developments. The purpose of this
paper is to review (a) the fluid mechanics and geophys-
ical work, and (b) the application of strain heating to
geophysical and geological problems. We aim to show
that strain heating is a significant phenomenon in the
continental crust and that its effects should be (a)
incorporated in all mechanical models of large-scale
deformation, and (b) borne in mind by the geologist
when he studies relic thermal gradients and deformation
zones. We focus our attention on shear zones, because
(i) deformation is strongly concentrated and relatively
large amounts of energy are dissipated; and (ii) the
boundary conditions impose physical constraints that
lead to simplifications in the mathematical formulation
of models.

Of the energy dissipated during permanent deforma-
tion, some may be converted into heat and some may be
used to change the physical state of the deforming mate-
rials (for example, the mineral phases present, or their
microstructural state). Most models of strain heating
ignore the latter effect and assume that all the mechan-
ical energy is converted into heat. Although we will here
adopt the same assumption, it is important to bear in
mind that geological deformation is often accompanied
by changes in physical state (e.g. syntectonic meta-
morphism). In some situations, endothermic reactions
may consume a significantly large proportion of the
available energy.

Of the energy converted into heat, some is stored loc-
ally and leads to arise in temperature, whereas the rest is
removed, for example by thermal conduction in the solid

state, or by circulating fluids. Here we will ignore the
latter effect and make the special assumption that heat is
transferred only in the solid state. Under these condi-
tions we are considering the following energy balance:

1)

A large part of this paper deals with solutions of (1)
under boundary conditions appropriate to shear zones.

It is important to realize that (1) does not always
describe a steady process. If the rate of energy dissipated
exceeds the rate of heat loss by conduction, the tempera-
ture must rise. The rheology of most rocks is strongly
temperature-dependent, and a rise in temperature
causes a softening effect. Such thermal softening may
allow an increased rate of deformation and thus an
increased rate of energy dissipation. Further tempera-
ture rises may ensue, leading to further softening and so
on. The general process is referred to as thermal feed-
back. Under certain circumstances, the temperature can
increase so quickly that deformation is effectively un-
stable: this is referred to as thermal runaway. Under
other circumstances, a steady state may be achieved
where the energy produced mechanically is continuously
balanced by that lost by conduction. Thus (1) is in
general time-dependent.

The amount of thermal softening and its feedback
effects are strongly dependent on the flow-laws chosen
for the strain-heating models. We discuss these aspects
first, concentrating on the temperature-dependence of
the flow-laws. Next we discuss briefly how stresses and
strain-rates may vary across a shear zone, as this pro-
vides important constraints on the modelis.

Models of strain heating are introduced and described
in increasing order of complexity. Thus we discuss first
the steady-state solutions for Newtonian materials with
a simple temperature-dependence; then we introduce
more realistic temperature-dependences and non-
Newtonian behaviour; lastly we consider some aspects
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of time-dependent behaviour. This is not strictly the
order in which developments appeared historically, for
which we refer the interested reader to the excellent
reviews by Sukanek & Laurence (1974) and Schubert &
Yuen (1978).

In a section on geological applications, we consider
some of the possible uses and misuses of the models. The
subject is certainly in its infancy and the conclusions are
limited by the lack of available data on rheological
properties and boundary conditions for the systems
considered. For these reasons the applications must be
interpreted cautiously. Nevertheless we feel the subject
may be fundamental to an understanding of tectonic
processes, and we have thus attempted to clarify some of
the principles involved.

RHEOLOGICAL PARAMETERS
Flow laws and thermal softening

Our knowledge and understanding of the rheology of
the continental crust is far from complete but it is
expanding. Here we will discuss some aspects relevant to
models of strain heating.

For a rock with a given composition and structure, the
flow characteristics depend heavily on three parameters,
stress, temperature and strain-rate (Heard 1976). In
general, two of these may be taken as independent vari-
ables. Measurements of strain in natural rocks and
laboratory experiments indicate that large volume
changes are rare. On the scale of the continental crust,
the effects of mean stress (lithostatic pressure) are also
not likely to be highly significant. Thus we may consider
primarily the deviatoric components of both stress and
strain-rate tensors.

All variables may conveniently be linked by means of
constitutive equations (flow-laws). The exact form of
such equations depends on the mechanism of deforma-
tion that is dominant (see Weertman & Weertman
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1975). Under most geological conditions extant in the
continental crust, flow is largely achieved by deforma-
tion mechanisms that are diffusion-controlled (Heard
1976). Amongst these are dislocation creep, Coble
creep, Nabarro-Herring creep and pressure-solution
(see Rutter 1976, McClay 1977). The corresponding
law for steady-state flow in an isotropic rock contains a
power-law dependence of strain-rate upon stress. It can
be written (Nye 1953):

v, = (KD/RT)E’Z—’%—la’,-,- @)

where &', is the tensor of deviatoric strain-rate, ¢’ ij that
of deviatoric stress, X', is the second invariant of the
latter, T is the thermodynamic temperature, R is the gas
constant, D is the diffusivity of the rate-controlling pro-
cess, n is the stress-exponent, and K is a constant. Such
an equation has been predicted theoretically and veri-
fied experimentally for polycrystalline monominerallic
rocks, including calcite (Heard & Raleigh 1972, Rutter
1976, Schmid et al. 1977), quartz (Rutter 1976, Parrish
et al. 1976) and olivine (Post 1977, Kohlstedt & Goetze
1974). Polyminerallic rocks are likely to behave in the
same way (Stocker & Ashby 1973, Weertman &
Weertman 1975, Heard 1976).

In equation (2), the diffusivity D is temperature-
dependent:

D = Dy exp (-H/R T) 3

where D, is a constant, H is the activation enthalpy of
the diffusion process and exp (— H/R T) is the Arrhenius
factor. This factor is of great importance, as it accounts
for most of the temperature dependence of creep. Its
effects are most strongly felt over a certain temperature
range that depends on the value of the activation
enthalpy for the material in question. For most rocks,
this value is within the range 0-300 kJ mol~! (Heard
1976), and the effects of the Arrhenius factor are most
strongly felt at temperatures below the melting point
(Fig. 1). For exampile, in the range 300°C < T 1 800°C,
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Fig. 1. Temperature-dependence of diffusivity. Temperature, T, is in Kelvins. Diffusivity, D, is referred to constant value,
D,. Curve A is based on the Arrhenius factor, exp (— H/RT), where His taken as 20 kJ mol~'. Curve F is based on the Frank-
Kamenetzky approximation about point P.
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and for an activation enthalpy of 200 kJ mol~! (typical of
calcite), a temperature increase of 100° at constant stress
corresponds to a tenfold increase in strain-rate. It is
perhaps surprising that such a dramatic effect has so
often been neglected in the modelling of continental
processes. -

The Arrhenius factor contains an exponential depen-
dence on reciprocal temperature which is mathemati-
cally inconvenient. Hence it is often replaced by a direct
exponential dependence, exp (aT) (Frank-Kamenetzky
1939). The Frank-Kamenetzky approximation is
obtained by retaining only the first two terms in a Taylor
expansion of (H/RT) in the vicinity of some reference
temperature, T}: this yields a = H/RT?. The approxima-
tion is good within the range T, — 50°< T < T, + 50°
(Fig. 1), but beyond this its use may lead to significant
errors.

It should be pointed out that temperature is not neces-
sarily the only softening agent in (2). Thus the stress
exponent, n, also plays a part (see Poirier 1980). For
many rocks, however, itisintherange 1 < n < 5 (Heard
1976): this means that strain-rate is more sensitive to
variations in temperature, than it is to variations in
stress. Other softening factors, implicit in the parameter
K of (2) are strain-softening, geometric or rotation sof-
tening (Cobbold 1977, Poirier 1980) and changes in
structure (Poiriér 1980). Very few quantitative data are
available for these processes and they will not be consi-
dered in what follows. Structural changes associated
with strain softening often lead to anisotropic behaviour,
so that (2) may be oversimplified in this respect. Some of
the consequences of anisotropic rheology in the
development of shear zones have been outlined by Cob-
bold (1977): they will not be considered here.

For an isotropic rock undergoing simple shear such
that the shear direction is the coordinate axis x, the plane
of shear is xy and the velocity along x is u, equation (2)
reduced to:

¥=35=@BDexp (HRDs! (&)
where o, = gy, is the shear stress, ¥ = 2¢,, is the shear
strain-rate and B = KDy/R is a constant. This is the
equation that will be used in the strain heating models of
the next section. It should perhaps be emphasized that
the equation describes a steady state flow, yet strain
heating leads in general to time-dependent flow. There
is obviously a need for experimental work on rocks
under conditions of variable temperature: until this is
done the use of (4) can be criticized.

Strain-rate and stress distribution

We will consider idealized models of shear zones, with
plane parallel margins (Ramsay & Graham 1970). The
kinematics of such zones are simple: in the absence of (a)
deformation outside the zones, and (b) volume changes,
all internal deformation is accomplished by shearing
parallel to the margins. The shear direction and the
width of the zone are constant in space. We will also
assume that the former is invariant with time. Thus we
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need consider only the shear strain-rate, ¥ = 2¢,,, which
may vary across the shear zone.

To respect the equations of stress equilibrium, in the
absence of gravitational forces, the shear stress and
normal stress acting on the margins must also be con-
stant across the entire zone (see e.g. Cobbold 1977). If
the material is isotropic, we need consider only the shear
stress (equation 4). If gravitational forces are significant,
as in a thrust sheet or nappe, the shear stress increases
with depth (see Elliott 1976). For constant density and
surface slope, the increase is linear.

STRAIN HEATING MODELS
General equations

For an isotropic medium, the energy balance equation
(1) can be written explicitly as (Carslaw & Jaeger 1959):

C—%T; - kYT + E.

(%)
The term on the left-hand side represents the rate
at which temperature increases with time, ¢ This is
governed by the volumetric specific heat, ¢. On the
right, the first term represents the rate of heat loss by
conduction, this being governed by the thermal
conductivity, K, and the temperature distribution

°T  9°T . 9T
VT= + +
( axt ay* 8z

rate of energy dissipation per unit volume of material. It

is given by: _
E=og, (6)

where o ; is the strain tensor and ¢;;the strain-rate tensor.
For simple shear, (6) takes the simple form:

). The second term, E, is the

E=as‘y=o?—'i.

e ™)

In (5), both ¢ and k are generally taken to be constant,
because for natural materials their temperature-
dependence is generally small; also this assumption
makes the equation easier to solve.

Another simplification is introduced if we consider
only the ideal shear zone, for which all variations are
one~-dimensional, that is, normal to the boundaries.
Taking the boundaries normal to y, (5) becomes:

&)

Use of this equation is probably justified for thrust
sheets and nappes, where heat flow is mostly vertically
directed. Justification is more difficult for transcurrent
shear zones near the upper surface of the crust, as here a
significant proportion of the heat flow is directed verti-
cally and hence parallel to the boundaries of the zone.
It is convenient to consider three special limits of (8),
for each of which one of the terms vanishes. If the first
term vanishes, we have:
2T _

oy - E.
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If E does not vary with time, (9) represents a steady

state. Whether or not such a state is ever truly attained

geologically, the study of (9) is a useful if not necessary

preliminary to the study of time-dependent solutions.

Much of the work reviewed in this paper concerns solu-

tions of (9). If in (8) the second term vanishes, we have:
aT

c—— =E.

Y (10)

Here no heat is conducted throughout the material and
the system is therefore at all points adiabatic. Such a
situation never actually occurs, but it is useful as a first
approximation for materials with very low thermal
conductivity or for sitnations where thermal gradients
are very small. Geologically, the use of (10) may be jus-
tified occasionally; but in general it is dangerous,
because the rate of heat loss by conduction often
matches or even surpasses the rate of heat production by
deformation.
Finally if in (8) the third term vanishes, we have:
2
L T au)
ot ay?

This corresponds to a zero heat source, and is the equa-
tion of heat conduction in one dimension. Solutions to
this equation are well known (Carslaw & Jaeger 1959).
They are useful models for what happens if internal
deformation ceases.

Steady state solutions

Substitution of (7) in (9) gives:

#T . du '
SR — = 0.
o (12)

For a steady-state, the stress o is constant in time. In the
absence of body forces it is also constant in space and
(12) can therefore be integrated, giving (Gavis & Laur-
ence 1968, Yuen et al. 1978).

dT
kd—y- + oU = 0.

(13)
No further integration is possible without introducing
the rheological properties. Substitution of the power-
law (4) into (12) gives:

&@T

dy*
This is a nonlinear differential equation of the second
order in T. If we use the Frank-Kamenetzky approxima-
tion, exp (aT), instead of the term (2B/T ) exp (— H/RT),
analytical solutions of this equation may be found. A
large amount of theoretical work concerning this
approach is reviewed historically and discussed by
Sukanek & Laurence (1974). For a known boundary
temperature, T;, Gavis & Laurence (1968a) give an
expression for the temperature within a slab of constant
thickness undergoing heterogeneous shear (plane
Couette flow). Early solutions of (14) assume New-
tonian behaviour (n = 1), which leads to simple analyt-

k

+ (o) (2B/T) exp (~H/RT) = 0. (14)
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Fig. 2. Steady-state solution for a Newtonian slab, with Frank-
Kamenetzky approximation. The Brinkman number, Br, is plotted

against the Gruntfest parameter, G. Thermal runaway occurs if G is
maintained at a value greater than 0.88.

ical expressions for the shear stress and shear rate across
the slab. It is convenient to express these by means of
two-dimensionless parameters, the Brinkman number,
Br, and the Gruntfest parameter, G (Gruntfest 1963).

These are defined as

aho?

L .
o = anE/k

;G =

k kwy
where , is the viscosity at temperature T, U is the
boundary value of the velocity u, and h is the half-
thickness of the slab. The solution of (14) is found to be
single-valued in terms of Br but double-valued in terms
of G (Joseph 1964, Gavis & Laurence 1968a). It can be
written (Sukanek & Laurence 1974):

4 . Brt |
G = arcsin < — > .
(2 + Br) 2

The parameter G has a maximum possible value G, of
0.88 (Fig. 2), for which the Brinkman number has a
value Br; of 4.55. For G > G/, no steady shear flow
exists. For G < Gy, there are two possible values of the
Brinkman number. Flows with Br < Br; have been
termed subcritical (see Schubert & Yuen 1978), and
those with Br > Br;, supercritical. Analytical expres-
sions also exist for the temperature and velocity profiles
across the slab (Gavis & Laurence 1968). The tempera-
ture varies in an almost parabolic way, reaching a maxi-
mum in the centre of the slab (Fig. 3). In consequence
the velocity also reaches a maximum in the centre.
The analytical solution (16) has been confirmed by
numerical calculations (Gruntfest 1963) which have
yielded the same maximum value of G = (.88 for a
steady state. The physical reality 6f the solutions, and
especially that of the supercritical branch, was for along
time open to question. It was finally confirmed by
experiments on Newtonian fluids (Sukanek & Laurence
1974). These demonstrated the existence of a maximum
shear stress (G = 0.88) at a certain shear rate
{Br = 4.5). The behaviour can be explained as follows.

Br =

(15)

(16)
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Fig. 3. Temperature distribution for steady-state shearing of New-

tonian slab. Dimensionless temperature, 8 = a (T — T), is plotted

against dimensionless position, § = y/h, for two values of the Gruntfest
parameter, G.

At low shear rates, the rate of shear strain increases
monotonically with stress, according to the stress-
exponent, n. The heat produced within the slab is neglig-
ible. At higher shear rates, shear heating is significant,
but more than matched by the rate of heat conduction:
thus the rate of shear strain still increases with stress,
although thermal softening has an effect. Above the crit-
ical rate (Br = 4.55), heat is produced faster than it can
be conducted out of the system: the material becomes
softer and the stress drops. In general, for a given stress,
there are two possible states, a cold one (subcritical
branch) and a warm one (supercritical branch).

A similar behaviour is exhibited by a material obeying
a power law as in (4) (Gavis & Laurence 1968b). This is
to be expected, because the solution of (14) at constant
stress gives the same temperature distribution for any
value of n.

Solutions of (14), with the full Arrhenius factor
instead of the Frank-Kamenetzky approximation, have
been studied by Yuen & Schubert (1977), and Schubert
& Yuen (1978), mainly in connection with models of
shear flow in the asthenosphere. The general approach

4
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Fig. 4. Sketch of steady-state solution for Newtonian slab with
Arrhenius factor. H—hot branch; I—intermediate or supercritical
branch; C—cold or subcritical branch.
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is reviewed by Yuen & Schubert (1979). They show that
use of the Arrhenius factor leads to the solutions having
a third branch (the hot branch), as well as the subcritical
and supercritical branches. The hot branch exists for all
high values of G (Fig. 4). It can be explained as follows.
At high shear rates, strain heating causes large tempera-
ture rises. The Arrhenius factor then tends towards a
limiting value (see section on flow laws). Hence the
thermal factor becomes almost negligible and stress
once again increases with strain rate, as it does on the
cold subcritical branch. It should be noted that the large
temperature rises needed to attain the hot branch will in
many natural materials cause changes in deformation
mechanisms or in mineral phases, thus invalidating the
model. The hot branch can be considered as an upper
theoretical limit for the model considered.

Using the full Arrhenius factor, Yuen et al. (1978)
give an analytical solution for the maximum tempera-
ture, T,.,, in the centre of a Newtonian slab. They show
that:

Ui = 4 kB{E, (H/RT,,) — E, (HRTy)} (17)

where u,, T are the velocity and temperature at the slab
boundaries and E, is a special function, the exponential
integral. It follows that for a given boundary velocity (to
which corresponds a unique value of boundary stress),
the maximum temperature in the centre of the slab is
independent of the slab thickness. If T, < T,,, (17) is
well approximated by the simpler expression:

U2 = (16 kBRT,,/H) exp (-H/RT,,). (18)

The accuracy of (18) has been verified by numerical
models incorporating a full-time dependence (Yuen et
al. 1978). Similar results have also been obtained by
graphical integration (Turcotte & Oxburgh 1968).

The existence of three branches of the steady-state
solutions has been confirmed numerically by Clarke et
al. (1977) even for situations where there is a geoth-
ermal heat flux normal to a slab, and where the shear
stress varies linearly with depth, as might be expectedin
glaciers and ice-sheets. Instead of the Gruntfest
parameter, G, Clarke et al. (1977) use a stability
parameter, 8, defined as:

B = ahE/k. (19)

Here E, is the rate of energy dissipation at the base of the
slab, when T = T,. The solutions (Fig. 5) can be pre-
sented in terms of three parameters: one is the stability
parameter, B, another is a dimensionless geothermal
parameter, ¢; the third is the dimensionless surface
temperature gradient. For high values of ¢, the solution
has only one branch, but for low values it has three bran-
ches.

If the shear stress and hence B are increased from
some initially low value, there will be a positive jump in
temperature and velocity once the critical value B, is
exceeded (Fig. 5). Similarly if B decreases from some
initially high value, there will be a negative jump near
the other critical value B,. The points are referred to in
the mathematical literature as bifurcation points (Keller
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Fig. 5. Sketch of steady-state solution for ice-sheet or thrust-sheet.

& Antman 1969). Topologically, the surface (Fig. 5)
corresponds to one of the seven elementary catastrophes
known as a cusp, or Riemann-Hugoniot, catastrophe
(Thom 1972). A positive temperature jump at $; would
occur physically by a process of thermal runaway. Just
how easily or at what point exactly this can occur must be
investigated using either the full time-dependent equa-
tions, or else a more simplified stability analysis, known
as a perturbation analysis. This will be discussed next.

Stability of the basic state

Much attention has been focussed on the stability of
the steady-state solutions so far examined. Thus if we
assume that a flow has a basic state which is steady, we
may ask what happens following a small perturbation of
the flow. Does the perturbation amplify significantly
with time, so that the basic state is unstable; or does the
perturbation decay, so that the flow returns to the basic
state which is therefore stable?

It would appear important in stability investigations of
this kind to distinguish between infinitesimal and finite

perturbations. If perturbations are infinitesimal, the -

mathematical treatment of the problem becomes easier,
because the equations to be solved are linearized. On the

other hand, finite perturbations may have more of a_

destabilizing effect.

Using the one-dimensional time-dependent equation
(8), Melosh (1976) argued that supercritical basic states
are unstable in the presence of infinitesimal perturba-
tions. The perturbation analysis assumed a condition of
constant boundary stress. Yuen & Schubert (1977) and
Schubert & Yuen (1978) have shown that the supercrit-
ical states are stable to infinitesimal perturbations if the
surface velocity is maintained constant. All these ana-
lyses however assumed that the perturbations were one-
dimensional.

Recently, Yuen & Schubert (1979) have investigated
two-dimensional infinitesimal perturbations in mate-
rials with a power-law rheology. They have shown that
all the basic states are stable to such perturbations. They
also argue that three-dimensional perturbations should
decay even more rapidly. However they do point out
that thermal runaway could perhaps be induced by

J. P. BruN and P. R. CoBpoLD

finite-amplitude disturbances, especially changes in
stress.

Clarke et al. (1977) have considered the time con-
stants for the growth of small perturbations super-
imposed on a subcritical basic state where stress
increases linearly with depth. Specifically they have
chosen perturbations due to increases in stress. Rapid
growth of instability was obtained only for relatively
large increases in stress. No analysis was performed for
two-dimensional perturbations and, following Yuen &
Schubert (1979), it is possible that the basic state is
stable under these conditions.

Fully time-dependent solutions

Substitution of (4) and (7) into (8) gives the one-
dimensional time dependent equation:

aT T

—— = k—— + n+1 2B/ - H/RT).
oy oy (o:)"" ! (2B/T) exp (—H/RT)
If we use the Frank-Kamenetzky approximation, (20)
becomes

2
2L 2T | eytiexpa(T- Ty, (1)

ot 9y?
This equation can be reduced to a dimensionless form by
the substitutions

(20

8 =a(T— T,); &€ = yh; v = kt/ch®. 22)
We obtain: '
30 _ 3%
el —a? Bexp® (23)

where f is defined as in (19) and becomes the Gruntfest
parameter, G, for Newtonian materials (n = 1). It was
Gruntfest (1963) who showed numerically that solu-
tions of (23) are critically dependent on the value of G
(Fig. 6). For boyndary conditions of constant stress and
temperature a steady state is achieved provided
G < 0.88. This is the critical value predicted analytically
(see section on Steady-State Solutions). The time
required to arrive at the steady state is approximately
given by (Fig. 6):

T=1.

(24)

For G > 0.88, no steady state is attained; instead the
temperature increases superexponentially (Fig. 6). This
is thermal runaway.

Griggs & Baker (1969) and Fujii & Uyeda (1974) also
studied this behaviour under constant stress. Under con-
stant strain-rates or constant boundary velocities, no
thermal runaway is possible. Instead the system evolves
until it reaches one of the branches of the steady state
(Griggs & Baker 1969).

Using the full Arrhenius factor and a Newtonian
rheology, Yuen et al. (1978) have studied the time-
dependent evolution of an initial disturbance in an infi-
nitely thick slab, with constant boundary velocity and
temperature. If the disturbance is initially highly
localized in a narrow zone within the slab, the tempera-
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Fig. 6. Numerical results of Gruntfest (1963) for time-dependent
model. Dimensionless temperature, 6, is plotted against dimensionless
time, 7, for vdrious values of Gruntfest parameter, G. True values of
time are indicated (top) for various widths, h, of shear zone. True
values of temperature (in degrees centigrade) are shown (right) for
various values of the Frank-Kamenetzky exponent, a.

ture in that zone rapidly tends towards the maximum
possible value predicted by the steady-state solutions,
whilst outward conduction of heat causes the zone to
widen slowly. Situations where the initial disturbance is
not so highly concentrated initially are considered by
Fleitout & Froidevaux (1980).

USES AND MISUSES OF MODELS

Geologists and geophysicists have long been aware
that deformation is a potential source of thermal energy
and this has led to many qualitative speculations con-
cerning the relationships of deformation and
metamorphism in orogenic belts. In this review we will
consider only quantitative analyses. They may be listed
in historical order; but we prefer instead to group them
according to the number of parameters considered and
the resulting complexity of the equations. We do not
pretend that the review is complete.

Adiabatic models

These correspond to solutions of equation (10). Such
models have the advantage of being relatively simple
and of providing an upper limit on the temperature rises
that can occur. It should not be forgotten that, by neg-
lecting heat loss by conduction, they may dangerously
overestimate the true temperature rise. The extent of
such a rise depends on whether or not the models con-
sider feedback effects and on the boundary conditions
adopted.

Goguel (1948) was one of the first to calculate the
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amounts of energy dissipated in orogenic belts and the
temperature rises this could produce. He did not con-
sider feedback and was forced to conclude that deforma-
tion did not produce enough heat to account for regional
metamorphism. More recently, Poirier et al. (1979)
have proposed a model of shear zone development with
thermal feedback under boundary conditions of con-
stant strain-rate. They conclude that strain heating does
not lead to significant temperature rises and that the
resulting shear zone geometry is not very different from
that produced under isothermal conditions. This result is
somewhat surprising, but probably is an outcome of the
assumption of constant strain-rate.

External heat source only

These models use the equations of heat conduction in
one (equation 11) or more dimensions. Strictly they are
not models of strain heating, but we mention them,
because they have contributed strongly to geologists’
understanding and recognition of thermal problems.
Thus Graham & England (1976) considered frictionally
generated heat on fault surfaces and determined the
thermal history of adjacent rocks. Close correspondence
was found with temperature deduced from metamorphic
mineral assemblages.

Constant internal heat source

These models are based on equation (8) where E is
assumed to be constant. Thus Reitan (1969) suggested
that heat could be generated by frictional contact be-
tween the constituent grains of a rock and that this could
lead to metamorphism. Unfortunately the assumption of
energy dissipation constant in space requires that
deformation be homogeneous: otherwise the equations
of stress equilibrium are violated. This limits the useful-
ness of the model. The same criticism can be levelled at
the model of shear zone development proposed by
Nicolas et al. (1977). We conclude that these models are
inappropriate for shear zones.

Thermal runaway under constant stress

The work of Gruntfest (1963) on solutions of equa-
tion (23) for Newtonian materials stimulated much
interest in the possibility of thermal runaway occurring
during natural processes. The advantage of this
approach is that it is a simple matter to calculate the sta-
bility parameter G of (15) and so decide whether or not
runaway will occur. The disadvantage is that it is neces-
sary to know the width of the zone of shearing. Also the
process cannot occur unless the applied shear stress
remains constant or nearly so.

The general approach has been applied to problems
of: (a) the genesis and emplacement of magmas (Shaw
1969, Fujii & Uyeda 1974, Hardee & Larson 1977); (b)
thermal instability in the asthenosphere (Anderson &
Perkins 1974, Melosh 1976, Schubert & Yuen 1978,
Yuen & Schubert 1979); (c) the stability of ice-sheets
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Fig. 7. Calculation of critical shear-zone widths for calcite (left) and quartz (right). Deformation mechanism maps (a & b)

are taken from Rutter (1976). Differential stress, o, normalized by the elastic modulus, G, is plotted against temperature.

Curves are labelled for — log {¢/s7!}, where &is axial strain-rate in uniaxial compression. In (c) and (d), curves are labelled

for — log {E/Wm™?%}, where E is the rate of energy dissipation in simple shear. In (e) and (f), curves are labelled for — log
{h/m}, where h_is the critical shear zone width.

(Clarke et al. 1977); and (d) shear zones in the conti-
nental crust (Cobbold & Brun 1977).

It is instructive to calculate the critical width h, of a
shear zone which must be exceeded for thermal runaway

to occur under given conditions of stress and rheology.
From (15) we have:

h, = (Gk/aEy)t. (25)

If we take a rock for which the mechanisms of deforma-
tion and strain-rates are known under various conditions
of temperature and differential stress (Figs. 7a & b), itis
possible to calculate the corresponding rates of energy
dissipation (Figs. 7c & d) and the exponential constant,

of the Frank-Kamenetzky approximation. Using a value
of k=25Wm™1K™!, and G = 0.88 (the critical value
for onset of thermal runaway) we have calculated, by
means of (25) the critical shear zone widths for thermal
runaway in polycrystalline quartz or calcite (Figs. 7¢ &
f). The results using this model indicate that thermal
runaway is only possible for very wide zones (1 km or
more) or very high differential stresses (greater than 1
kbar = 108 Pa). These conditions are difficult to meetin
natural shear zones: so is the condition of steady applied
stress, which is necessary for thermal runaway. One
possibility which comes to mind is a thrust sheet or
nappe, which is analogous to an ice sheet or glacier. For
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thrust sheets, the total thickness may easily exceed 5 km;
but the basal shear stress is unlikely to exceed 50 bars (5
MPa) (Elliott 1976). These conditions are apparently
not sufficient for the onset of runaway (Fig. 7), but they
are close enough to warrant a better analysis. Thus we
may consider the model of Clarke et al. (1977), origi-
nally proposed for ice-sheets, where the shear stress
increases linearly with depth. Unfortunately, results are
not available for the range of activation energies typical
of many rocks: thus this subject remains to be investi-
gated.

For runaway to occur in narrow zones (<1 m),
differential stresses must exceed 1 kbar (10% Pa). Such
conditions may lead to seismic failure, thus rendering
the ductile models inapplicable.

A factor not considered in analyses of thermal
runaway is, of course, the time. Is enough time available
for thermal runaway to become established? Are the
displacements involved not too great? For problems of
stability in the asthenosphere, Yuen & Schubert (1979)
have applied equation (24) and decided that there may
be just enough time to develop thermal runaway. For
nappes and thrust sheets, where deformation is often
concentrated in the lowermost zones and the total
displacement may be in the order of tens of kilometres,
there would appear to be no problem here either.
Nevertheless, the subject remains open.

Steady state

The steady-state solutions discussed earlier may be
used as models for steady geological situations where
stress is not high enough for thermal runaway to occur.
Thus Yuen et al. (1978), using equation (18), have
calculated the maximum temperature T, attained in
the centre of a transcurrent shear zone subjected to a
constant boundary velocity of 10 cm a~!. The values
obtained are independent of the shear zones thickness
and of the boundary temperature provided this is not too
high. In contrast, values depend on rheology: they are
1190, 999, 963, 834 and 619 K, for dry olivine, wet
olivine, diabase, wet quartzite and limestone, respec-
tively. The same values were also obtained by numerical
methods. Such temperatures are surprisingly high; but
then 10 cm a~! is geologically a high velocity (spread
over a width of 30 km, it corresponds to a mean strain-
rate of about 10~ 13s~1). The temperature gradient across
the steady-state model implies that strain-rates in the
centre are several orders of magnitude greater than at
the margins. Thus most of the deformation is concen-
trated in the centre, and thermal softening, even in
steady state, is a very effective localizing agent.

Full time-dependence

Fully time-dependent solutions of (20) have been
applied by Yuen et al. (1978) to the initiation of a
transcurrent shear zone in viscous crustal materials (see
earlier sections). The approach provides interesting
information on the thermal history at each point and on
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the widening of the zone of shear. The maximum
temperatures attained are well predicted by the steady
state solutions.

DISCUSSION

We wish to discuss certain points that we feel may be
of interest to structural geologists, as well as suggest how
further progress might be made.

Possibility of inducing partial melting

It has been suggested many times that shear heating
could raise temperatures sufficiently to cause partial
melting (e.g. Nicolas er al. 1977), leading in turn to
diapiric uprise of granitic melts. This would explain cer-
tain associations of granitic bodies and shear zones in the
continental crust. Conversely, it has been suggested
(Poirier et al. 1979) that thermal softening produced by
ascending plutons would conveniently localize a major
shear zone, and explain the association more readily.
The subject is of great interest in tectonics, but field evi-
dence (in particular, geochronological data) is lacking.

Of the models discussed above, none of the physically
valid ones predict temperatures high enough to yield
partial melting, with the exception of those involving
thermal runaway. But we have seen that thermal
runaway is unlikely to occur in the crust except in seismic
situations (narrow zones and high stresses) and possibly
in some nappes and thrust-sheets: therefore it is
tempting to conclude that shear heating cannot produce
partial melting.

The conclusion is perhaps premature, because the
models considered are still very simple. Thus they all
assume, for example, that the material in the shear zone
is compositionally homogeneous. Fleitout & Froidevaux
(1980) have suggested that localized partial melting may
occur in softer layers within a stratified sequence.

Rheological consequences of strain heating

Even if strain heating does not always have such spec-
tacular consequences as partial melting, it must
nevertheless exert a very significant control on deforma-
tion in large-scale shear zones. For example, at constant
stress, even a rise in temperature of 100 K canleadtoan
order-of-magnitude increase in strain rate (Fig. 7a, 1). It
may also in certain circumstances cause a change in
deformation mechanism (Fig. 7a, 2). The steady-state
models have no difficulty in predicting temperature rises
of 100 K and this is sufficient to localize 90% of the
deformation in the hotter zone. Such a mechanical effect
cannot be neglected in any simulation of large-scale tec-
tonic processes.

Consequences for the field geologist

All strain heating models for shear zones predict
temperature differences and gradients which should be
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detectable in rocks. Evidence of such gradients (e.g.
Nicolas et al. 1977) is so far scanty and controversial.
Isotope- methods, detailed studies of deformation
mechanisms, and studies of fluid inclusions or
temperature-sensitive mineral parageneses, may
eventually indicate whether the models are correct. In
particular it may become possible to decide whether
heat is consumed by other processes, such as circulation
of fluids or endothermic mineral reactions.

Further prospects

The theoretical models are as yet too simple. More
complex models and equations should perhaps be
studied. Two-dimensional and three-dimensional
models are already feasible, using numerical methods.
Coupling of thermal and mechanical effects is perhaps
best accomplished by finite element methods.
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